谁有奥数题试卷


四年级或五、六年级的

第一届小学“希望杯”全国数学邀请赛 四年级 第1试
1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有______个;在图C中,有______个。

2.写出下面等式右边空白处的数,使等式能够成立:
0.6+0.06+0.006+…=2002÷______ 。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =______ 。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是______。
6.气象局对部分旅游景区的某一天的气温预报如下表:

其中,温差最小的景区是______ ,温差最大的景区是______。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折______ 次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有______ ,它们的和等于_____ 。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。这时四个组的书一样多。这说明甲组原来有书______ 本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有______ 个,小朋友共______ 组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是______ ,它比较小的数大______ 。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距______ 千米。
13.甲、乙、丙三人中只有1人会开汽车。甲说:“我会开。”乙说:“我不会开。”丙说:“甲不会开。”三人的话只有一句是真话。会开车的是______ 。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。回校后,小明补给小光28元。小明、小光各带了______ 元,每本书价______ 元。
15.长方形被分成了4个小长方形,图4中的数字是它们每个的面积,阴影部分的面积是______ 。

16.天气预报说:今天的降水概率是30%,明天的降水概率是50%,后天的降水概率是35%。下雨可能性最大的是______ 天。
17.如图,水平桌面(桌面不反光)上放有两个同样大小的足球M、N,每个足球的正上方悬挂有相同的灯泡。A灯泡位置比B灯泡位置低。当灯泡点亮时,受光照部分更多的是______ 球。

18.用20厘米长的铜丝弯成边长是整数的长方形,这样的长方形不只一种。其中,面积最小的,长______ 厘米,宽______ 厘米;面积最大的长方形的长______ 厘米,宽______ 厘米。
19.在一个正方形水池的四周,环绕着一条宽2米的路(如图),这条路的面积是120平方米,那么水池的面积是______ 平方米。

20.下边是一个六位数乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ 。

21.甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141千米;出发后5小时,两车相遇。A、B两地相距______ 千米。
22.小琴、小惠、小梅三人报名参加运动会的跳绳,跳高和短跑这三个项目的比赛,每人参加一项,报名的情况有______ 种。
23.下图是一个正方体木块。M是AB的中点,N是AD的中点。用一把锋利的锯,过M、N、G三个点将木块锯成两块,使截面是平的,这个截面是______ 边形。

24.师生共52人外出春游,到达后,班主任要给每人买一瓶矿泉水,给了班长买矿泉水的钱。班长到商店后,发现商店正在进行促销活动,规定每5 个空瓶可换1瓶矿泉水。班长只要买______ 瓶矿泉水,就可以保证每人一瓶。
25.下图是一所小学的科技数,它有4层,正面每层的三个圆形窗户由左向右表示一个三位数,这些三位数是:837、571、206、439,但是不知道这四个数和哪一层的窗户对应,请你观察一下,然后画出攻发掇菏墀孤峨酞法喀表示2008的四个窗户 。
四年级的奥数试卷
一、按规律填数。

1)64,48,40,36,34,( )
2)8,15,10,13,12,11,( )
3)1、4、5、8、9、( )、13、( )、( )
4)2、4、5、10、11、( )、( )
5)5,9,13,17,21,( ),( )
二、等差数列
1.在等差数列3,12,21,30,39,48,…中912是第几个数?

2.求1至100内所有不能被5或9整除的整数和

3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?

4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和

5.将自然数如下排列,

1 2 6 7 15 16 …

3 5 8 14 17 …

4 9 13 18 …

10 12 …

11 …



在这样的排列下,数字排在第2行第1列,13排在第3行第3列,问:1993排在第几行第几列?

三、 平均数问题
1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ .
2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .

3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?

4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.
23, 26, 30, 33
A、B、C、D 4个数的平均数是多少?
5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是 。

四、加减乘除的简便运算
1)100-98+96-94+92-90+……+8-6+4-2=( )

2)1976+1977+……2000-1975-1976-……-1999=( )

3)26×99 =( )
4)67×12+67×35+67×52+67=( )
5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)

五、数阵图

1、△、□、〇分别代表三个不同的数,并且:

△+△+△=〇+〇;〇+〇+〇+〇=□+□+□; △+〇+〇+□=60

求:△= 〇= □=

2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.

3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.

4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果。所谓幻方是指在正方形的方格表的每个攻发掇菏墀孤峨酞法喀方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数。

六、和差倍问题

1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?

2.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。

3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?

4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?
5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?

6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
七、年龄问题
1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?

2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?

3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?

4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?

八、假设问题
1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵.男、女生各多少人?
2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?
3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?
4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?
5. 育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣5分,张小灵最终得分为41分,她做对了多少道题?
?表示长方形
将长0.03米 ,宽0.01米的长方形硬纸如下图那样1层,2层,3层******叠成山形

? ? ?

? ? ? ?
? ? ?
(1)当叠到4层时,叠成的图形的周长是多少米?(请写出算式)
(2)如果将层数定为x层,周长定为y米,请写出y的算式。
(3) 如果叠成图形的
工程问题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天

3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?
解:
由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量
(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
解:由题意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)
1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)
得到1/甲=1/乙×2
又因为1/乙=1/17
所以1/甲=2/17,甲等于17÷2=8.5天

5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?
答案为300个
120÷(4/5÷2)=300个
可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵

7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?
答案45分钟。
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。
1/2÷18=1/36 表示甲每分钟进水
最后就是1÷(1/20-1/36)=45分钟。
小学五年级奥数测试题(每题6分,共120分)     班级: 姓名:  1、计算:
  15.6789÷20÷5   34.5×8.23-34.5+2.77×34.5 0.9999×0.7+0.1111×2.7
  2、找规律填数
  (1) 1、4、7、10、( )、16、19
  (2) 2、6、18、54、( )、486、1458
  3、小红步行上学,每分钟走60米,离家11分钟后,妈妈发现小红的数学书忘在家中,立即带着数学书以每分钟280米的速度去追小红,妈妈出发(  )分钟后追上小红。
  4、三辆汽车共运输货物910吨,第一辆汽车比第二辆汽车多运30吨,第三辆汽车比第二辆汽车少运20吨,第一辆汽车运货物( )吨。
  5、小红、小张、小李三人在一起,其中一位是工人,一位是战士,一位是大学生。现在知道:小李比战士年龄大,小红和大学生不同岁,大学生比小张年龄小,他们三人中,( )是工人。
  6、一个长方形,如果长增加6厘米或者宽增加4厘米,面积都比原来增加48平方厘米,这个长方形原来的面积是( )平方厘米。
  7、等腰直角三角形斜边长为8厘米,则此三角形的面积是(    )平方厘米。
  8、有50位同学植树,男同学每人植树5棵,女同学每人植树4棵,共植树230.男同学有(   )人,女同学有(   )人。
  9、人民商场以每只13元的价格购进一批茶杯,以每只14.8元的价格卖出。卖到还剩下5只时,除去购进这批茶杯的成本外,还获得88元利润。这批茶杯有(   )只。
  10、把盒中200只红球进行调换。每次调换必须首先从盒中取出3只红球,然后再放入2只白球,那么,在最后一次调换之前盒中的球数是(    )只。
  11、有一个正方形的花池,周围边长为25厘米的方砖铺了一条宽1.5米的小路,用去方砖1776块,花池的面积是(    )平方米。
  12、甲乙丙三个工人搬运一批物资,共得劳务费384元,甲得的2倍等于乙得的3倍,乙得的2倍等于丙的4倍,乙得(   )元,丙得(    )元。
  13、自动扶梯以均匀的速度由下往上行驶,两个小孩嫌电梯太慢,急着从扶梯上楼,甲小孩每分钟走26级,乙小孩每分钟走14级,结果甲小孩用4分钟到达楼上,乙小孩用6分钟到达楼上,该扶梯共有(    )级。
  14、甲乙丙三人同时从400米的环形跑道的同一地点出发,丙与甲乙方向相反。已知甲速度每秒6米,乙速度每秒5米,丙速度每秒4.5米,他们出发后(   )秒,丙第一次位于甲,乙的正中间。
  15、对一个两位数进行一次操作是指:将它的两个数字相乘,如果得到一个一位数,则将它写两遍。例如对39进行5次操作依次得到39—27—14一44—16—66.那么经过4次操作变为88的两位数有(   )个。
  16、将长、宽、高分别为11、10、8的长方体的三个面染上红色,另一个面染上黄色,然后切成棱长为1的单位小正方体,那么只染了一种颜色的小正方体最多有(   )个。
  17、五个裁判员给一名体操运动员评分,去掉一个最高分和一个最低分,平均得9.58分;去掉一个最高分平均得9.46分,去掉一个最低分平均得9.66分。这个运动员的最高分和最低分相差(   )分。
  18、某人驾驶一辆小轿车要作32000千米的长途旅行,除了车上装着四只轮胎,只带了一只备用胎,为了使五只轮胎磨损程度相同,司机有规律地把五只轮胎轮换使用,到达终点时。每只轮胎行驶了(    )千米。
  19、甲、乙、丙三人的平均年龄为42岁,若将甲的岁数增加7岁,乙的岁数增大2倍,丙的年龄缩小2倍,则三人岁数相等,丙的年龄是(    )岁。
  20、幼儿园给大班、小班分水果,大班每人分得3个苹果和1个梨,小班每人分得5个苹果和2个梨,结果发现小班比大班少分得24个苹果。
  (1)如果两个班分得的梨一样多,那么小班有(    )人。
  (2)如果小班比大班多分得2个梨,那么小班有(    )人。
  答案:1、0.156789 345 0.9999 2、13 162 3、3 4、330 5、小张
  6、96 7、16 8、30 20 9、90 10、134 11、289 12、128 64 13、144
  14、40 15、9 16、308 17、0.8 18、25600 19、76 20、24 30


Copyright © 2009-2011 All Rights Reserved.